

December 12, 2022 Sysmex Corporation

[Overview presentation]

15th Clinical Trials on Alzheimer's Disease (CTAD)

Age dependency of plasma β -amyloid measured by fully automated and highly specific immunoassays in a Japanese cohort study (SESSA)

Authors	Kengo Ishiki ¹ , Moniruzzaman ² , Yuichiro Yano ² , Keiko Kondo ² , Aya Kadota ²⁾ , Masahiro
	Miura ¹ , Shigeki Iwanaga ¹ , Masaki Nishimura ³ , Hirotsugu Ueshima ² , Katsuyuki Miura ²
	¹ Central Research Laboratories, Sysmex Corporation
	² NCD Epidemiology Research Center (NERC), Shiga University of Medical Science
	³ Molecular Neuroscience Research Center, Shiga University of Medical Science
Overview	Backgrounds
presentation	In recent years, blood-based plasma β -amyloid (A β) has been increasingly studied
	as a potential biomarker of Alzheimer's disease (AD) because it is less invasive, more
	cost-effective, and easily accessible. Mounting evidence shows that the ratio of
	plasma A β_{1-42} to A β_{1-40} (A β 42/A β 40) is highly concordant with amyloid PET status,
	suggesting that it may reflect the brain $A\beta$ pathology. Besides amyloid pathology in
	the brain, other risk factors for AD development are known, most notably age.
	Considering the use of plasma $A\beta$ for the enrollment of subjects for clinical trials or
	for diagnostic adjunct purposes, it is important to understand the association between
	age and plasma A eta . Because many disease-modifying therapies currently under
	development target the early stages before the onset of AD, it is necessary to
	understand the age dependency of plasma $A\beta$ in older adults with normal cognitive
	function. However, several studies have reported conflicting results regarding the age
	dependence of plasma Aβ levels.
	$A\beta$ is known to be unstable in the blood, and various factors at the time of blood
	collection are known to influence levels of blood $A\beta.$ Such factors may influence the
	contralateral results on age dependency so far. Currently, the technique of canceling
	the effect by taking the ratio as A β 42/ A β 40 is often used. On the other hand, when
	trying to understand the age-dependency of A $eta40$ and A $eta42$ alone, the handling of
	samples during blood collection requires rigor.

Objectives

In this study, we aimed to examine the age-dependency of plasma Aβ40 and Aβ42 in a general Japanese male population using samples collected under a uniform protocol.

Methods

The Shiga Epidemiological Study of Subclinical Atherosclerosis (SESSA) is an ongoing epidemiological study in a general population randomly selected from Kusatsu City (Japan) residents at baseline (2006–2008). The second survey was performed between 2010 and 2014 and a total of 853 men aged 46–83 participated in medical examination. We collected blood samples by venipuncture and stored them at -80 degrees Celsius until measurement. For sample collection, blood collected in a collection tube containing EDTA was mixed by gently inverting several times, then stored on ice until centrifugation. Plasma A β 40 and A β 42 were measured using a fully automated immunoassay platform (HISCLTM series) in 2021. Both A β 40 and A β 42 were measured twice, and the average was used for analysis. We evaluated the age-dependency of A β 40 and A β 42 based on the measurement results of 822 participants, excluding 31 participants for whom measurements could not be performed. For this purpose, we divided participants into 5 age groups at 10 years intervals and examined the age dependency of A β 40, A β 42, and A β 42/A β 40 ratio by the Kruskal-Wallis test.

Results

The mean age of the participants was 69 years. There were significant differences in both A β 40 and A β 42 across the age groups, but not for A β 42/A β 40 ratio. The change per year of age for A β 40 and A β 42 were showing a significant increase by age. On the other hand, the change per year of age for A β 42/A β 40 ratio was showing a significant decrease by age.

Conclusion

Our results showed that plasma A β 40 and A β 42 increase in an age-dependent manner, while the A β 42/A β 40 ratio decreases in an age-dependent manner. This age-related change in plasma A β levels may be due to changes in production or functional changes in the blood-brain barrier. However, compared with the age-dependent changes in A β 40 and A β 42, the age-dependency of A β 42/A β 40 ratio was more gradual, with no significant differences found in the analysis divided into 5 age groups. It may suggest that age dependence may be reduced by using the A β 42/A β 40 ratio. Although the present results were based only on men and limited to the Japanese

	population, they suggest that using appropriate sample handling protocols and
	measurement methods may be able to assess the relationship between plasma $A\beta$
	and other factors. To further our understanding of plasma $A\beta,$ an assessment of the
	association with cognitive function and other AD risk factors, as well as in women and
	other races, is warranted in the future.
Session	Poster, Clinical Trials: Biomarkers including plasma (LP68)