

June 3rd, 2025 Sysmex Corporation

[Overview presentation]

An unbiased tissue transcriptome analysis identifies potential markers for skin phenotypes and therapeutic responses in atopic dermatitis

Authors	Ayano Fukushima-Nomura ¹ , Hiroshi Kawasaki ^{1,2} , Kiyoshi Yashiro ¹ , Shoko
	Obata ¹ , Keiji Tanese ¹ , Tamotsu Ebihara ¹ , Hidehisa Saeki ³ , Takafumi Etoh ⁴ ,
	Takehiro Hasegawa ⁵ , Junshi Yazaki ^{6,14} , Jun Seita ^{7,15} , Osamu Ohara ⁸ , Aiko
	Sekita², Tomohiro Miyai², Koichi Ashizaki ^{1,2,7,15} , Haruhiko Koseki ^{2,9} , Kazuhiro
	Sakurada ^{7,10,15} , Eiryo Kawakami ^{7,11, 12,15*} , Masayuki Amagai ^{1,13*}
	1, Department of Dermatology, Keio University School of Medicine, Tokyo,
	Japan.
	2, Laboratory for Developmental Genetics, RIKEN Center for Integrative
	Medical Sciences (IMS), Yokohama, Japan.
	3, Department of Dermatology, Nippon Medical School, Tokyo, Japan.
	4, Department of Dermatology, Tokyo Teishin Hospital, Tokyo, Japan.
	5, Sysmex R&D Centre Europe GmbH, Research and Development Division,
	Hamburg, Germany.
	6, Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical
	Sciences (IMS), Yokohama, Japan.
	7, Advanced Data Science Project (ADSP), RIKEN Information R&D and
	Strategy Headquarters, RIKEN, Tokyo, Japan.
	8, Kazusa DNA Research Institute, Chiba, Japan.
	9, Cellular and Molecular Medicine, Advanced Research Departments,
	Graduate School of Medicine, Chiba University, Chiba, Japan
	10, Department of Extended Intelligence for Medicine, Keio University School
	of Medicine, Tokyo, Japan.
	11, Department of Artificial Intelligence Medicine, Graduate School of Medicine,
	Chiba University, Chiba, Japan

	 Institute for Advanced Academic Research (IAAR), Chiba University, Chiba City, Chiba 260-8670, Japan Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan Present Address: Faculty of Agriculture, Laboratory for Genome Biology, Setsunan University, Hirakata, Japan Present Address: Predictive Medicine Special Project, RIKEN Center for Integrative Medical Sciences (IMS), RIKEN, Yokohama, Japan.
Overview presentation	Objectives Atopic dermatitis (AD) is a disease with significant interindividual variability in symptoms and severity, making personalized medicine highly necessary. While previous studies have suggested that skin inflammation is mainly driven by type 2 inflammation , recent findings indicate the involvement of other immune pathways, highlighting the complexity of its molecular mechanisms. Moreover, the effectiveness of molecular targeted therapies varies among individuals, and the mechanisms for this variability remain unclear. Methods The research team collected 951 full-thickness 1-mm skin biopsy samples from 156 patients with atopic dermatitis (AD) and performed comprehensive gene expression analysis using RNA sequencing. An unsupervised machine learning technique, non-negative matrix factorization (NMF), was applied to identify 29 gene
	co-expression patterns without relying on prior hypotheses. In addition, cross-sectional analyses of skin symptoms and blood biomarkers measured using the HISCL-5000 [™] system were conducted, along with longitudinal assessments of the therapeutic response to the molecular targeted drug Dupilumab over a sixmonth period.

Results

Gene Pattern Extraction via NMF

Application of NMF to the gene expression data from skin samples identified 29 gene clusters, referred to as "SKIn-Tissue derived Metagenes (SKITm)".

Cross-sectional Study: Associations with Local Skin Symptoms

Analysis of the relationship between specific SKITm and clinical features such as erythema (redness), infiltration (raised skin), lichenification (thickened skin), and excoriation (scratch marks), as well as overall disease severity, revealed that certain gene clusters are associated with specific clinical findings. For example, erythema was linked to SKITm17 (type 2 inflammation) and SKITm10 (type 17 inflammation), while amyloid lichenification was associated with SKITm11 (type 1 inflammation).

In addition, blood levels of EDN (eosinophil-derived neurotoxin) correlated with skin SKITm17 (type 2 inflammation), and CCL20 (type 17 inflammation-related cytokine) with SKITm10 (type 17 inflammation). The widely used clinical disease severity marker CCL17 (TARC) was associated with both SKITm17 and SKITm10.

Longitudinal Study: Association between Therapeutic Response to Dupilumab and Molecular Profiles

Dupilumab, a molecular targeted drug against type 2 inflammation, was administered to 24 patients for six months. Patients were classified into early responders, intermediate responders, and poor responders based on treatment outcomes, and their skin gene expression and blood biomarkers were analyzed.

In poor responders, elevated expression of SKITm10, a newly identified extracellular matrix-related gene cluster (SKITm16), and a transcription factor-related cluster (SKITm5) was observed prior to treatment, along with high levels of blood biomarkers such as IL-22, IL-18, and CCL20.

During treatment, SKITm17 was rapidly suppressed in all groups, while SKITm10 remained persistently elevated in the poor

Sysmex Corporation

	responder group.
	These findings suggest that in patients where Dupilumab shows
	limited efficacy, residual inflammatory pathways and tissue-specific
	gene abnormalities may serve as potential therapeutic targets.
	Conclusion
	This study revealed part of the molecular pathophysiology
	underlying the heterogeneity of symptoms and individual differences
	in treatment response in AD through an unbiased, comprehensive
	analysis. The identification of gene clusters associated with specific
	symptoms and predictive biomarkers for treatment response
	represents a significant step toward personalized medicine. These
	insights may contribute to diagnostic support, the development of
	new therapeutic targets, and the application of this method to other
	skin diseases.
Journal	Nature Communications
	https://doi.org/10.1038/s41467-025-59340-x