

June. 27 2024 Sysmex Corporation

[Overview presentation]

Clinical and analytical validation of an 82-gene comprehensive genome-profiling panel for identifying and interpreting variants responsible for inherited retinal dystrophies

Authors	Jacqueline Chan ¹ , Jolyon Holdstock ¹ , John Shovelton ¹ , James Reid ¹ , Graham
	Speight ¹ ,Duarte Molha ¹ ,Venu Pullabhatla ¹ ,Stephanie Carpenter ¹ ,Ezam
	Uddin ¹ ,Takanori Washio ^{2,3} ,Hiroko Sato ² ,Yuuki Izumi ⁴ ,Reiko Watanabe ⁵ ,Hayato
	Niiro⁵,Yoshiyuki Fukushima⁵,Naoko Ashida⁵,Takashi Hirose⁵,Akiko Maeda ⁶
	¹ Oxford Gene Technology Operations Limited, Kidlington, Oxfordshire, United
	Kingdom
	² Life Innovation Center, Riken Genesis Co. LTD, Kawasaki, Kanagawa, Japan
	³ Division of Clinical Cancer Genomics,Hokkaido University Hospital, Sapporo,
	Hokkaido, Japan
	⁴ Technology Innovation, Sysmex Corporation,Kobe, Hyogo, Japan
	⁵ Medical & Scientific Affairs, Sysmex Corporation, Kobe, Hyogo, Japan
	⁶ Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Hyogo, Japan
Overview	Inherited retinal dystrophies comprise a clinically complex and heterogenous
presentation	group of diseases characterized by visual impairment due to pathogenic variants
	of over 300 different genes. Accurately identifying the causative gene and
	associated variant is crucial for the definitive diagnosis and subsequent selection
	of precise treatments. Consequently, well-validated genetic tests are required in
	the clinical practice. Here, we report the analytical and clinical validation of a
	next-generation sequencing targeted gene panel, the PrismGuide IRD Panel
	System. This system enables comprehensive genome profiling of 82 genes
	related to inherited retinal dystrophies. The PrismGuide IRD Panel System
	demonstrated 100% ($n = 43$) concordance with Sanger sequencing in detecting
	single-nucleotide variants, small insertions, and small deletions in the target
	genes and also in assessing their zygosity. It also identified copy-number loss in
	four out of five cases. When assessing precision, we evaluated the reproducibility
	of variant detection with 2,160 variants in 144 replicates and found 100%

Sysmex Corporation

agreement in to	
agreement in te	rms of single-nucleotide variants ($n = 1,584$) and small insertions
and deletions	(n = 576). Furthermore, the PrismGuide IRD Panel System
generated suffic	cient read depth for variant calls across the purine-rich and highly
repetitive open-	reading frame 15 region of <i>RPGR</i> and detected all five variants
tested. These	results show that the PrismGuide IRD Panel System can
accurately and	consistently detect single-nucleotide variants and small insertions
and deletions.	Thus, the PrismGuide IRD Panel System could serve as useful
tool that is appli	cable in clinical practice for identifying the causative genes based
on the detectio	n and interpretation of variants in patients with inherited retinal
dystrophies and	d can contribute to a precise molecular diagnosis and targeted
treatments.	
Journal PLOS ONE	
https://doi.org/1	0.1371/journal.pone.0305422