

March 15th, 2024 Sysmex Corporation

[Overview presentation]

AD/PD[™] 2024 International Conference on Alzheimer's and Parkinson's Diseases

Increasing plasma Abeta42/40 accuracy by combining p-tau181 levels that are measured by fully automated immunoassay platform

 Masahiro Miura¹, Shigeki Iwanaga², Toshiyuki Sato¹, Atsushi Iwata³ ¹Central Research Laboratories, Sysmex Corporation, Kobe, Japan, ²Technology Strategy, Sysmex Corporation, Kobe, Japan, ³Department of Neurology, Tokyo Metropolitan Geriatric Hospital and Institute of gerontology, Tokyo, Japan Overview Objectives Confirming amyloid pathology in the brain is necessary for determining the eligibility for Alzheimer's disease treatment with disease-modifying therapeutics. Blood-based biomarkers have attracted attention for invasiveness and accessibility, including the plasma β-amyloid1-40, 1-42 ratio (Aβ42/40) and phosphorylated tau (p-tau). We have previously shown that plasma Aβ42/40 measured by an Automated Immunoassay System HISCLTM-5000 / HISCL-800 can predict amyloid pathology with high accuracy. In this study, clinical performance was evaluated in combination with prototype p-tau181 assay to investigate the additional potential of blood biomarkers in predicting amyloid pathology. Methods Plasma Aβ42/40 and p-tau181 were measured in 25 samples collected at Tokyo Metropolitan Geriatric Hospital and Institute of gerontology to assess their ability to predict amyloid pathology. Amyloid pathology in the brain was determined by amyloid PET scans as assessed by visual read method. The distribution of each biomarker level in the PET-positive and PET-negative groups was compared by 		
 ¹Central Research Laboratories, Sysmex Corporation, Kobe, Japan, ²Technology Strategy, Sysmex Corporation, Kobe, Japan, ³Department of Neurology, Tokyo Metropolitan Geriatric Hospital and Institute of gerontology, Tokyo, Japan Overview Objectives Confirming amyloid pathology in the brain is necessary for determining the eligibility for Alzheimer's disease treatment with disease-modifying therapeutics. Blood-based biomarkers have attracted attention for invasiveness and accessibility, including the plasma β-amyloid1-40, 1-42 ratio (Aβ42/40) and phosphorylated tau (p-tau). We have previously shown that plasma Aβ42/40 measured by an Automated Immunoassay System HISCLTM-5000 / HISCL-800 can predict amyloid pathology with high accuracy. In this study, clinical performance was evaluated in combination with prototype p-tau181 assay to investigate the additional potential of blood biomarkers in predicting amyloid pathology. Methods Plasma Aβ42/40 and p-tau181 were measured in 25 samples collected at Tokyo Metropolitan Geriatric Hospital and Institute of gerontology to assess their ability to predict amyloid pathology. Amyloid pathology in the brain was determined by amyloid PET scans as assessed by visual read method. The distribution of each biomarker level in the PET-positive and PET-negative groups was compared by Mann-Whitney U test. The predictive performance of amyloid pathology was 	Authors	Kazuya Matsumoto ¹ , Shun Murakami ¹ , Kengo Ishiki ¹ , Kazuto Yamashita ¹ ,
 ²Technology Strategy, Sysmex Corporation, Kobe, Japan, ³Department of Neurology, Tokyo Metropolitan Geriatric Hospital and Institute of gerontology, Tokyo, Japan Overview Objectives Confirming amyloid pathology in the brain is necessary for determining the eligibility for Alzheimer's disease treatment with disease-modifying therapeutics. Blood-based biomarkers have attracted attention for invasiveness and accessibility, including the plasma β-amyloid1-40, 1-42 ratio (Aβ42/40) and phosphorylated tau (p-tau). We have previously shown that plasma Aβ42/40 measured by an Automated Immunoassay System HISCLTM-5000 / HISCL-800 can predict amyloid pathology with high accuracy. In this study, clinical performance was evaluated in combination with prototype p-tau181 assay to investigate the additional potential of blood biomarkers in predicting amyloid pathology. Methods Plasma Aβ42/40 and p-tau181 were measured in 25 samples collected at Tokyo Metropolitan Geriatric Hospital and Institute of gerontology to assess their ability to predict amyloid pathology. Amyloid pathology in the brain was determined by amyloid PET scans as assessed by visual read method. The distribution of each biomarker level in the PET-positive and PET-negative groups was compared by Mann-Whitney U test. The predictive performance of amyloid pathology was 		Masahiro Miura ¹ , Shigeki Iwanaga ² , Toshiyuki Sato ¹ , Atsushi Iwata ³
³ Department of Neurology, Tokyo Metropolitan Geriatric Hospital and Institute of gerontology, Tokyo, Japan Overview presentation Confirming amyloid pathology in the brain is necessary for determining the eligibility for Alzheimer's disease treatment with disease-modifying therapeutics. Blood-based biomarkers have attracted attention for invasiveness and accessibility, including the plasma β-amyloid1-40, 1-42 ratio (Aβ42/40) and phosphorylated tau (p-tau). We have previously shown that plasma Aβ42/40 measured by an Automated Immunoassay System HISCLTM-5000 / HISCL-800 can predict amyloid pathology with high accuracy. In this study, clinical performance was evaluated in combination with prototype p-tau181 assay to investigate the additional potential of blood biomarkers in predicting amyloid pathology. Methods Plasma Aβ42/40 and p-tau181 were measured in 25 samples collected at Tokyo Metropolitan Geriatric Hospital and Institute of gerontology to assess their ability to predict amyloid pathology. Amyloid pathology in the brain was determined by amyloid PET scans as assessed by visual read method. The distribution of each biomarker level in the PET-positive and PET-negative groups was compared by Mann-Whitney U test. The predictive performance of amyloid pathology was		¹ Central Research Laboratories, Sysmex Corporation, Kobe, Japan,
gerontology, Tokyo, Japan Overview Objectives presentation Confirming amyloid pathology in the brain is necessary for determining the eligibility for Alzheimer's disease treatment with disease-modifying therapeutics. Blood-based biomarkers have attracted attention for invasiveness and accessibility, including the plasma β-amyloid1-40, 1-42 ratio (Aβ42/40) and phosphorylated tau (p-tau). We have previously shown that plasma Aβ42/40 measured by an Automated Immunoassay System HISCLTM-5000 / HISCL-800 can predict amyloid pathology with high accuracy. In this study, clinical performance was evaluated in combination with prototype p-tau181 assay to investigate the additional potential of blood biomarkers in predicting amyloid pathology. Methods Plasma Aβ42/40 and p-tau181 were measured in 25 samples collected at Tokyo Metropolitan Geriatric Hospital and Institute of gerontology to assess their ability to predict amyloid pathology. Amyloid pathology in the brain was determined by amyloid PET scans as assessed by visual read method. The distribution of each biomarker level in the PET-positive and PET-negative groups was compared by Mann-Whitney U test. The predictive performance of amyloid pathology was		² Technology Strategy, Sysmex Corporation, Kobe, Japan,
Overview Objectives Coverview Confirming amyloid pathology in the brain is necessary for determining the eligibility for Alzheimer's disease treatment with disease-modifying therapeutics. Blood-based biomarkers have attracted attention for invasiveness and accessibility, including the plasma β-amyloid1-40, 1-42 ratio (Aβ42/40) and phosphorylated tau (p-tau). We have previously shown that plasma Aβ42/40 measured by an Automated Immunoassay System HISCLTM-5000 / HISCL-800 can predict amyloid pathology with high accuracy. In this study, clinical performance was evaluated in combination with prototype p-tau181 assay to investigate the additional potential of blood biomarkers in predicting amyloid pathology. Methods Plasma Aβ42/40 and p-tau181 were measured in 25 samples collected at Tokyo Metropolitan Geriatric Hospital and Institute of gerontology to assess their ability to predict amyloid pathology. Amyloid pathology in the brain was determined by amyloid PET scans as assessed by visual read method. The distribution of each biomarker level in the PET-positive and PET-negative groups was compared by Mann-Whitney U test. The predictive performance of amyloid pathology was		³ Department of Neurology, Tokyo Metropolitan Geriatric Hospital and Institute of
presentation Confirming amyloid pathology in the brain is necessary for determining the eligibility for Alzheimer's disease treatment with disease-modifying therapeutics. Blood-based biomarkers have attracted attention for invasiveness and accessibility, including the plasma β-amyloid1-40, 1-42 ratio (Aβ42/40) and phosphorylated tau (p-tau). We have previously shown that plasma Aβ42/40 measured by an Automated Immunoassay System HISCLTM-5000 / HISCL-800 can predict amyloid pathology with high accuracy. In this study, clinical performance was evaluated in combination with prototype p-tau181 assay to investigate the additional potential of blood biomarkers in predicting amyloid pathology. Methods Plasma Aβ42/40 and p-tau181 were measured in 25 samples collected at Tokyo Metropolitan Geriatric Hospital and Institute of gerontology to assess their ability to predict amyloid pathology. Amyloid pathology in the brain was determined by amyloid PET scans as assessed by visual read method. The distribution of each biomarker level in the PET-positive and PET-negative groups was compared by Mann-Whitney U test. The predictive performance of amyloid pathology was		gerontology, Tokyo, Japan
 eligibility for Alzheimer's disease treatment with disease-modifying therapeutics. Blood-based biomarkers have attracted attention for invasiveness and accessibility, including the plasma β-amyloid1-40, 1-42 ratio (Aβ42/40) and phosphorylated tau (p-tau). We have previously shown that plasma Aβ42/40 measured by an Automated Immunoassay System HISCLTM-5000 / HISCL-800 can predict amyloid pathology with high accuracy. In this study, clinical performance was evaluated in combination with prototype p-tau181 assay to investigate the additional potential of blood biomarkers in predicting amyloid pathology. Methods Plasma Aβ42/40 and p-tau181 were measured in 25 samples collected at Tokyo Metropolitan Geriatric Hospital and Institute of gerontology to assess their ability to predict amyloid pathology. Amyloid pathology in the brain was determined by amyloid PET scans as assessed by visual read method. The distribution of each biomarker level in the PET-positive and PET-negative groups was compared by Mann-Whitney U test. The predictive performance of amyloid pathology was 	Overview	Objectives
Blood-based biomarkers have attracted attention for invasiveness and accessibility, including the plasma β-amyloid1-40, 1-42 ratio (Aβ42/40) and phosphorylated tau (p-tau). We have previously shown that plasma Aβ42/40 measured by an Automated Immunoassay System HISCLTM-5000 / HISCL-800 can predict amyloid pathology with high accuracy. In this study, clinical performance was evaluated in combination with prototype p-tau181 assay to investigate the additional potential of blood biomarkers in predicting amyloid pathology. Methods Plasma Aβ42/40 and p-tau181 were measured in 25 samples collected at Tokyo Metropolitan Geriatric Hospital and Institute of gerontology to assess their ability to predict amyloid pathology. Amyloid pathology in the brain was determined by amyloid PET scans as assessed by visual read method. The distribution of each biomarker level in the PET-positive and PET-negative groups was compared by Mann-Whitney U test. The predictive performance of amyloid pathology was	presentation	Confirming amyloid pathology in the brain is necessary for determining the
accessibility, including the plasma β-amyloid1-40, 1-42 ratio (Aβ42/40) and phosphorylated tau (p-tau). We have previously shown that plasma Aβ42/40 measured by an Automated Immunoassay System HISCLTM-5000 / HISCL-800 can predict amyloid pathology with high accuracy. In this study, clinical performance was evaluated in combination with prototype p-tau181 assay to investigate the additional potential of blood biomarkers in predicting amyloid pathology. Methods Plasma Aβ42/40 and p-tau181 were measured in 25 samples collected at Tokyo Metropolitan Geriatric Hospital and Institute of gerontology to assess their ability to predict amyloid pathology. Amyloid pathology in the brain was determined by amyloid PET scans as assessed by visual read method. The distribution of each biomarker level in the PET-positive and PET-negative groups was compared by Mann-Whitney U test. The predictive performance of amyloid pathology was		eligibility for Alzheimer's disease treatment with disease-modifying therapeutics.
 phosphorylated tau (p-tau). We have previously shown that plasma Aβ42/40 measured by an Automated Immunoassay System HISCLTM-5000 / HISCL-800 can predict amyloid pathology with high accuracy. In this study, clinical performance was evaluated in combination with prototype p-tau181 assay to investigate the additional potential of blood biomarkers in predicting amyloid pathology. Methods Plasma Aβ42/40 and p-tau181 were measured in 25 samples collected at Tokyo Metropolitan Geriatric Hospital and Institute of gerontology to assess their ability to predict amyloid pathology. Amyloid pathology in the brain was determined by amyloid PET scans as assessed by visual read method. The distribution of each biomarker level in the PET-positive and PET-negative groups was compared by Mann-Whitney U test. The predictive performance of amyloid pathology was 		Blood-based biomarkers have attracted attention for invasiveness and
 measured by an Automated Immunoassay System HISCLTM-5000 / HISCL-800 can predict amyloid pathology with high accuracy. In this study, clinical performance was evaluated in combination with prototype p-tau181 assay to investigate the additional potential of blood biomarkers in predicting amyloid pathology. Methods Plasma Aβ42/40 and p-tau181 were measured in 25 samples collected at Tokyo Metropolitan Geriatric Hospital and Institute of gerontology to assess their ability to predict amyloid pathology. Amyloid pathology in the brain was determined by amyloid PET scans as assessed by visual read method. The distribution of each biomarker level in the PET-positive and PET-negative groups was compared by Mann-Whitney U test. The predictive performance of amyloid pathology was 		accessibility, including the plasma $\beta\text{-amyloid1-40},\ 1\text{-42}$ ratio (A $\beta42/40$) and
 can predict amyloid pathology with high accuracy. In this study, clinical performance was evaluated in combination with prototype p-tau181 assay to investigate the additional potential of blood biomarkers in predicting amyloid pathology. Methods Plasma Aβ42/40 and p-tau181 were measured in 25 samples collected at Tokyo Metropolitan Geriatric Hospital and Institute of gerontology to assess their ability to predict amyloid pathology. Amyloid pathology in the brain was determined by amyloid PET scans as assessed by visual read method. The distribution of each biomarker level in the PET-positive and PET-negative groups was compared by Mann-Whitney U test. The predictive performance of amyloid pathology was 		phosphorylated tau (p-tau). We have previously shown that plasma A β 42/40
performance was evaluated in combination with prototype p-tau181 assay to investigate the additional potential of blood biomarkers in predicting amyloid pathology. Methods Plasma Aβ42/40 and p-tau181 were measured in 25 samples collected at Tokyo Metropolitan Geriatric Hospital and Institute of gerontology to assess their ability to predict amyloid pathology. Amyloid pathology in the brain was determined by amyloid PET scans as assessed by visual read method. The distribution of each biomarker level in the PET-positive and PET-negative groups was compared by Mann-Whitney U test. The predictive performance of amyloid pathology was		measured by an Automated Immunoassay System HISCLTM-5000 / HISCL-800
investigate the additional potential of blood biomarkers in predicting amyloid pathology. Methods Plasma Aβ42/40 and p-tau181 were measured in 25 samples collected at Tokyo Metropolitan Geriatric Hospital and Institute of gerontology to assess their ability to predict amyloid pathology. Amyloid pathology in the brain was determined by amyloid PET scans as assessed by visual read method. The distribution of each biomarker level in the PET-positive and PET-negative groups was compared by Mann-Whitney U test. The predictive performance of amyloid pathology was		can predict amyloid pathology with high accuracy. In this study, clinical
pathology. Methods Plasma Aβ42/40 and p-tau181 were measured in 25 samples collected at Tokyo Metropolitan Geriatric Hospital and Institute of gerontology to assess their ability to predict amyloid pathology. Amyloid pathology in the brain was determined by amyloid PET scans as assessed by visual read method. The distribution of each biomarker level in the PET-positive and PET-negative groups was compared by Mann-Whitney U test. The predictive performance of amyloid pathology was		performance was evaluated in combination with prototype p-tau181 assay to
Methods Plasma Aβ42/40 and p-tau181 were measured in 25 samples collected at Tokyo Metropolitan Geriatric Hospital and Institute of gerontology to assess their ability to predict amyloid pathology. Amyloid pathology in the brain was determined by amyloid PET scans as assessed by visual read method. The distribution of each biomarker level in the PET-positive and PET-negative groups was compared by Mann-Whitney U test. The predictive performance of amyloid pathology was		investigate the additional potential of blood biomarkers in predicting amyloid
Plasma Aβ42/40 and p-tau181 were measured in 25 samples collected at Tokyo Metropolitan Geriatric Hospital and Institute of gerontology to assess their ability to predict amyloid pathology. Amyloid pathology in the brain was determined by amyloid PET scans as assessed by visual read method. The distribution of each biomarker level in the PET-positive and PET-negative groups was compared by Mann-Whitney U test. The predictive performance of amyloid pathology was		pathology.
Plasma Aβ42/40 and p-tau181 were measured in 25 samples collected at Tokyo Metropolitan Geriatric Hospital and Institute of gerontology to assess their ability to predict amyloid pathology. Amyloid pathology in the brain was determined by amyloid PET scans as assessed by visual read method. The distribution of each biomarker level in the PET-positive and PET-negative groups was compared by Mann-Whitney U test. The predictive performance of amyloid pathology was		
Metropolitan Geriatric Hospital and Institute of gerontology to assess their ability to predict amyloid pathology. Amyloid pathology in the brain was determined by amyloid PET scans as assessed by visual read method. The distribution of each biomarker level in the PET-positive and PET-negative groups was compared by Mann-Whitney U test. The predictive performance of amyloid pathology was		Methods
to predict amyloid pathology. Amyloid pathology in the brain was determined by amyloid PET scans as assessed by visual read method. The distribution of each biomarker level in the PET-positive and PET-negative groups was compared by Mann-Whitney U test. The predictive performance of amyloid pathology was		Plasma A β 42/40 and p-tau181 were measured in 25 samples collected at Tokyo
amyloid PET scans as assessed by visual read method. The distribution of each biomarker level in the PET-positive and PET-negative groups was compared by Mann-Whitney U test. The predictive performance of amyloid pathology was		Metropolitan Geriatric Hospital and Institute of gerontology to assess their ability
biomarker level in the PET-positive and PET-negative groups was compared by Mann-Whitney U test. The predictive performance of amyloid pathology was		to predict amyloid pathology. Amyloid pathology in the brain was determined by
Mann-Whitney U test. The predictive performance of amyloid pathology was		amyloid PET scans as assessed by visual read method. The distribution of each
		biomarker level in the PET-positive and PET-negative groups was compared by
evaluated by ROC analysis.		Mann-Whitney U test. The predictive performance of amyloid pathology was
		evaluated by ROC analysis.

	Results
	The samples were classified into 8 amyloid PET positive and 17 negative groups.
	Both A β 42/40 and p-tau181 showed significant differences between two groups
	(p<0.005, p<0.05, respectively). Furthermore, ROC analysis showed that the
	area under the curve (AUC) value was increased when combining p-tau181 with
	Aβ42/40 (AUC: 0.890) compared to Aβ42/40 alone (AUC: 0.857).
	Conclusion
	Our study has demonstrated that the plasma p-tau181 assay increased the
	predictive accuracy of plasma A β 42/40 for amyloid PET status. In the future, we
	would increase the number of clinical samples to confirm the reliability of this
	specific combination. Through the expanding of our research, our goal is to
	contribute to the advancement of AD diagnosis using blood-based biomarkers.
Session	POSTER: THEME B (P0824 / #2855)