Experimental Blood Cell Counting on Several Kinds of Animals with an Automated Hematology Analyzer

Junichi SHIRAISHI, Hideaki MATSUMOTO, and Hideki HIRAYAMA

Technology Development Div., Sysmex Corporation, 4-4-4, Takatsukadai, Nishi-ku, Kobe 651-2271

We undertook the blood cell counting on blood from 15 kinds of animals including laboratory animals, such as rat, mouse and rabbit, and using the human blood measurement conditions of an automated hematology analyzer. We found the analyzer can count the numbers of leukocytes, erythrocytes, and platelets of the various animals except for the platelets of goats and sheep. Since some of the erythrocytes overlapped the cell size distribution of platelets, the numbers of platelets of goat and sheep could not be counted.

The cell size distribution curve of the leukocytes of dog, cat, ferret, hamster, and cheetah showed the single peak distribution curve, and other animals showed a double peak.

A hematocrit ratio (PCV/HCT) of the centrifugal hematocrit value (PCV) to HCT value in the human blood measurement conditions of automated hematology analyzer was 0.65 of minimum in the goat and 1.08 of maximum in the elephant.

Key Words Blood Cell Counting, Exotic Animals, Industrial Animals, Laboratory Animals, Wild Animals

Received 3 November, 2006; Accepted 6 November, 2006

INTRODUCTION

During the past several years we have received many inquiries from veterinary hospitals, university research laboratories, and animal-related public organizations about blood cell counting on animals other than dogs and cats.

We have obtained some useful information by making measurements on the blood cells of 15 types of animals, including exotic animals, laboratory animals, industrial animals, and wild animals etc. with an automated hematology analyzer, and report the results below.

MATERIALS AND METHODS

The automated hematology analyzer used in this study did not have inbuilt programs for measuring conditions for animals other than dogs and cats. Therefore, the blood samples of the different animals of this study were analyzed under the measuring conditions meant for human blood. The centrifugal hematocrit value was obtained with the micro hematocrit centrifuge 3220 (KUBOTA Corporation, Japan) run at 12,000 rpm for 6 min. The HCT, MCV, and MCHC values given in *Table 1* are values corrected manually by applying correction factors. These correction factors were the mean values of the hematocrit ratio (PCV/HCT) calculated from the centrifuge hematocrit value (PCV) and the HCT value measured by the automated hematology analyzer.

Note: This article is translated and republished from Sysmex Journal Vol. 29: 46-53, 2006.

		WBC	RBC	HGB	HCT	MCV	MCH	MCHC	PLT	Hematocrit ratio*
Ferret	MIN	27	610	9.9	27.8	42.9	14.9	32.5	9.0	0.765
n-12	MAX	155	1391	22.3	66.4	48.2	16.8	35.6	147.0	0.911
11-12	AV	86.2	980.3	15.2	44.6	45.5	15.5	34.2	39.9	0.855
	SD	42.6	257.9	4.0	12.0	1.5	0.6	1.0	39.6	0.039
Desirie Des	MIN	39	485	7.4	24.5	50.6	15.3	28.7	31.1	0.887
Plaine Dog	MAX	170	947	15.9	55.3	66.5	21.3	35.2	78.1	1.020
n=10	AV	79.3	688.8	12.4	40.3	58.3	18.1	31.0	46.8	0.962
	SD	46.5	166.3	28	10.3	4.8	1.8	1.9	16.6	0.040
	MIN	14	726	13.5	41.9	50.5	15.9	30.7	69.2	0.889
Kat	MAX	146	945	15.8	50.2	61.6	19.6	33.0	139.0	0.990
n=20		7/ 6	810.0	14.7	45.8	56.1	18.0	32.1	108.3	0.930
	- 40	21.0	71 /	0.8	23	33	1.2	0.6	16.4	0.024
		51.0	716	10.7	33.2	45.8	14.4	30.7	95.8	0.804
Mouse		16	020	14.2	/2.9	40.0	16.3	33.7	183.4	0.902
n=20		40	920	14.3	40.0	43.5	10.3	32.2	1/6 1	0.859
	AV	23.3	630.6	12.0	39.0	47.7	15.4	1.0	20.8	0.009
	SD	12.1	55.7	0.9	2.5	57.0	10.0	22.4	20.0	0.020
Hamster	MIN	23	728	15.3	46.7	57.8	19.3	32.4	30.0	0.911
n=12	MAX	69	940	18.5	55.1	64.1	21.2	33.9	197.0	0.971
	AV	41.3	852.3	17.2	51.6	60.7	20.2	33.3	/5.3	0.943
	SD	15.3	72.5	1.0	2.7	2.2	0.6	0.5	48.0	0.020
Rabbit	MIN	54	563	10.7	34.4	57.3	17.8	31.1	27.3	0.896
n=20	MAX	116	696	14.5	45.3	67.2	22.3	33.4	61.9	0.962
	AV	81.8	640.0	12.9	40.2	62.7	20.2	32.2	47.5	0.933
	SD	18.4	44.6	1.0	3.2	2.4	0.9	0.7	8.3	0.018
Horse	MIN	55	663	10.8	29.7	41.6	15.0	33.3	9.7	0.870
n=26	MAX	167	1165	19.7	55.1	48.7	17.4	37.7	19.8	1.050
11-30	AV	88.8	976.5	15.8	44.5	45.5	16.2	35.5	13.1	0.926
	SD	19.7	108.1	1.8	5.2	1.7	0.6	1.0	3.0	0.032
Swine	MIN	122	533	10.6	32.5	51.1	15.6	29.6	17.3	0.813
3 wille	MAX	262	853	15.5	47.3	63.4	21.6	35.5	131.0	0.911
n=42	AV	180.0	733.5	13.3	40.6	55.6	18.3	32.9	37.3	0.869
	SD	37.0	83.4	1.0	3.3	3.4	1.4	1.1	23.2	0.022
~	MIN	42	1170	8.5	24.3	20.2	6.6	30.8		0.613
Goat	MAX	130	2109	15.9	50.3	25.1	8.0	35.6		0.756
n=18		00.0	1509.2	11.7	35.0	22.3	73	32.7		0.681
		20.5	255.2	2.0	7.2	1.2	0.4	1 4		0.037
	30	30.5	200.2	10.0	20.0	20.1	10.4	33.6		0.001
Sheep		11	020	16.0	20.0	36.6	12.0	38.6		0.704
n=31	MAX	96	1400	10.2	40.2	20.0	11.5	35.7		0.733
	AV	48.2	1079.0	12.4	34.7	32.1	11.5	35.7		0.742
	SD	16.0	138.6	1.4	4.6	1.5	0.0	1.4	24.2	0.022
Holstein	MIN	37	468	8.5	23.9	33.6	9.0	29.0	475.5	0.791
n=55	MAX	180	1150	13.4	41.7	53.6	19.8	37.3	1/5.5	0.983
	AV	88.5	737.5	10.9	32.2	44.7	15.2	33.9	56.9	0.915
	SD	25.4	159.5	0.9	3.6	5.5	2.7	2.3	36.5	0.042
Black Japanese	MIN	32	695	9.1	26.2	32.2	10.3	31.5	15.6	0.795
n=46	MAX	94	1134	18.6	48.1	54.0	20.9	38.9	51.8	0.947
	AV	64.0	924.7	13.0	37.2	40.9	14.4	34.8	28.6	0.868
	SD	15.9	133.8	2.1	4.8	7.2	3.4	2.2	8.9	0.039
Elephant	MIN	103	252	11.2	32.9	123.0	41.4	33.6	18.7	1.044
n-5	MAX	230	310	13.3	39.3	135.0	46.3	34.5	36.8	1.098
11-5	AV	147.4	282.6	12.4	36.5	129.4	44.1	34.1	27.3	1.080
	SD	52.4	22.1	0.8	2.3	4.6	2.0	0.4	6.9	0.023
Bharal	MIN	54	1365	12.9	35.7	24.5	8.4	33.5	43.0	0.643
Dilaral	MAX	127	2031	18.6	55.5	27.3	9.6	36.6	90.3	0.804
n=8	Δ\/	87.5	1586.4	14.6	41 1	25.9	9.2	35.5	71.1	0.700
		22.5	213.2	1.8	6.3	1.0	0.4	1.1	19.0	0.047
		22.0	706	12.2		43.0	13.0	31.6	25.7	0 767
Cheetah		92	050	14 5	74.1		19.3	33.6	20.7	0.780
n=2		100	909	14.5	44.4	10.0	10.7	22.6	20.7	0.709
	AV	99.0	8/1.5	14.1	43.2	49.0	10.3	32.0	21.2	0.110
	SD	9.9	115.3	1.1	1.6	8.4	3.4	1.4	∠.1	0.016

Table 1 Measured values of the different types of animals

Hematocrit ratio*: Centrifuge hematocrit value/HCT value obtained under the measeurement conditions for human blood

[Units]		
WBC: ×10 ² /µL	MCV: fL	MIN: Minimum
RBC: ×10 ⁴ /µL	MCH: pg	MAX: Maximum
HGB: g/dL	MCHC: g/dL	AV: Average
HCT: %	PLT: ×10 ⁴ /µL	SD: Standard deviation

1. Exotic animals

1) Ferret

The blood of 12 ferrets, 9 males and 3 females (aged 1-6 years), which were brought to the Exotic Pet Clinic was sampled by cutting a nail and collecting the dripping fresh blood directly into a Capiject blood collection tube containing Na2EDTA (TERUMO Corporation, Japan ; hereinafter "Capiject tubes").

2) Prairie dog

The blood was drawn from the femoral vein of 10 prairie dogs, 4 males, 4 females, and 2 castrated males (aged 2-8 years) that were brought to the Exotic Pet Clinic, with a manual syringe, and transferred into Capiject tubes.

2. Industrial animals

1) Cattle

The blood was drawn under vacuum from the jugular vein of 46 head of Black Japanese and 55 head of Holsteins of the Hyogo Prefectural Technology Center for Agriculture, Forestry and Fisheries into 5mL vacuum blood collection tubes containing K2EDTA (TERUMO Corporation, Japan ; hereinafter "2K-5mL tubes").

Black Japanese:

28 growing steers, castrated males (aged 9-10 months) 18 breeding bulls (aged 3-6 years)

Holstein:

19 heifers (uncalved) (aged 0 to 28 months) 36 adult cows (aged 2-8 years)

2) Horse

The blood was drawn under vacuum from the jugular vein of 36 thoroughbreds of the Hyogo Prefecture Horse Racing Union into 5mL vacuum blood collection tubes containing Na2EDTA (TERUMO Corporation, Japan).

Thoroughbred:

- 19 males (aged 3-6 years)
- 15 females (aged 3-6 years)
- 2 castrated males (aged 3-6 years)

3) Swine

The blood was drawn under vacuum from the jugular vein of 42 pigs of the Hyogo Prefectural Technology Center for Agriculture, Forestry and Fisheries, into 2K-5mL tubes.

Large Yorkshire:

4 males (aged 5-7 months), 2 males (aged 4 and 5 years), and 5 females (aged 5-7 months)

Landrace:

2 males (aged 4 and 5 years) and 3 females (aged 7 months)

Duroc:

4 males (aged 2-5 months), 5 females (aged 2-6 months), and 2 females (aged 1 and 2 years) Crossbreeds of the above 3 varieties:

7 males (aged 3-8 months), 4 females (aged 5-8 months), and 4 females (aged 1-4 years)

4) Goat

The blood was sampled from the jugular vein of a total of 18 goats from 3 farms given below. Manual syringes were used to collect blood from goats of the Kobe City Rokkousan Pasture and the Awaji Farm Park England Hill and the sampled blood was transferred to 2K-5mL tubes. For goats of the Himeji Central Park, the blood was drawn under vacuum into the collection tubes of the same type.

Kobe City Rokkousan Pasture Saanen: 1 male (aged 7 years) Crossbreeds: 7 females (aged 4-9 years) and 2 castrated males (aged 6 and 7 years)
Awaji Farm Park England Hill Angora goat: 2 males (aged 6 years) Yakushima goat: 2 females (aged 8 and 9 years)
Himeji Central Park Crossbreeds: 1 male and 3 females (aged 1-4 years)
5) Sheep

The blood was collected with manual syringes from 31 sheep of the Awaji Farm Park England Hill, and transferred to 2K-5mL tubes.

Corriedale: 23 males (aged 1-6 years) and 5 castrated males (aged 2 and 3 years). Suffolk: 1 female (aged 8 years) Southdown: 1 female (aged 2 years) Suffolk crossbreeds: 1 castrated male (aged 2 years)

3. Laboratory animals

1) Rabbit

The blood was collected from an auricular posterior vein of 20 male Std.NZW rabbits (aged 11-44 weeks) with manual syringes and transferred to 2mL vacuum collection tubes containing K2EDTA (TERUMO Corporation, Japan ; hereinafter "2K-2mL tubes").

2) Rat

The blood was collected from a total of 20 SPF/VAF rats, 10 males and 10 females, (aged 8 and 40 weeks). The animals were given ether anesthesia, their abdomen opened, and the blood collected from the heart with a manual syringe and transferred to 2K-2mL tubes. The animals were killed after cardiac puncture without regaining consciousness.

3) Mouse

The blood was collected from a total of 20Crj: CD mice, 10 males (aged 10 and 28 weeks) and 10 females (aged 10 and 32 weeks). The animals were given ether anesthesia, the abdomen opened, and the blood collected from the heart with a manual syringe and transferred to 2K-2mL tubes. The animals were killed after cardiac puncture without regaining consciousness.

4) Hamster

The blood was collected from 6 male and 6 female Syrian hamsters (all aged 10 weeks). The animals were given ether anesthesia, the abdomen opened, and the blood collected from the heart with a manual syringe and transferred to 2K-2mL tubes. The animals were killed after cardiac puncture without regaining consciousness.

4. Wild animals

1) Elephant

The blood was drawn under vacuum from the auricular vein of a total of 5 African elephants, 2 males (aged 13 and 23 years) and 3 females (aged 22-23 years), of the Himeji Central Park into 2K-5mL tubes.

2) Bharal

The blood was drawn under vacuum from the jugular veins of a total of 8 bharals, 3 males (aged 2-5 years) and 5 females (aged 3 and 12 years) of the Himeji Central Park into 2K-5mL tubes.

3) Cheetah

The blood was drawn under vacuum from the caudal veins of 2 male cheetahs (aged 6 and 8 years) of the Himeji Central Park into 2K-5mL tubes.

RESULTS AND DISCUSSION

We examined whether it was possible to measure WBC, RBC, and platelets from the cell size distribution curves. *Fig. 1* shows typical blood cell size distribution curves of the different animal species, and compares them with those of humans, dogs, and cats. *Table 1* shows the minimum, maximum, average, and standard deviation of the measured values and the hematocrit ratio for each animal type.

Animal type: Humans PCV: 41.0	Animal type: Dogs PCV: 48.0	Animal type: Cats PCV: 32.0	Animal type: Horse PCV: 47.0	Animal type: Black Japanese PCV: 47.5	Animal type: Holstein PCV: 34.5
Species OTHER1 WBC 48 #8/8 RBC 446 *8/4 HGB 14.4 g/d HGT 41.6 1 MCV 93.3 f. MCHC 34.6 g/d PLT 23.0 H/d	Species Dog WBC 96 dHz R0C 753 dHz HGB 16.9 4/3 HCT 49.9 4/3 HCT 49.9 1 MCV 66.3 f. MCH 23.9 9/2 PLT 20.9 9/3	Species Cat WBC 106 + #/4 RBC 601 - #/4 HCB 11 - 1 + 4 HCT 32,31 MCV 53,7 ft MCHC 34,4 #/4 MCHC 34,4 #/4	Simecies OTHER3 HBC 83.9% L HBC 10.75.4% L HBC 16.2.4% L HCT 54.31 MCV 50.5 f. MCHC 19.8 s/L PLT 17.4 s/P/L	Spectime OTHERS WBC 61 + d//L RBC 974 + d//L HGB 16, 6 + d//L HGB 16, 6 + d//L HGB 16, 7, 0 + d//L MCHC 32, 2 + d/L PLT 33, 8 + d//L	Species OTHERS WEC 76 4% A NSC 722 4% A NSD 12.0 M HOT 36.6 f MCV 52.7 f MCHC 31.1 M PLT 42.6 M
400 100 100 (m.) 100 100 (m.) 100 100 (m.) 101 100 (m.)	are Local 100 100 100 100 100 100 100 100 100 10	100 300 (n) 100 300 (n) 100 300 (n) 100 300 (n)			
N 8 8 8 (4)	18 x 8 (A)	10 20 M 14J	10 10 10 [4]	N (4)	10 10 30 DAJ

Animal type: Swine PCV: 44.0	Animal type: Goat PCV: 28.0	Animal type: Sheep PCV: 33.5	Animal type: Rat PCV: 46.0	Animal type: Mouse PCV: 39.5	Animal type: Rabbit PCV: 38.0
Species OTHERS WBC 161 47/4 RBC 777 47/4 HGB 14.2 4/4 HGT 51.8 5 MCV 66.3 1 MCH 18.3 m MCHC 27.6 8/4 FLT 30.5 49/4	Species OTHERS HDC 104 #/A HBC 104 #/A HCD 10.1 st HCT 4.43.15 HCV 8.431.7 f HCH 8.4 7.4 s HCH 8.4 7.4 s HCH 8.4 7.4 s HCH 8.4 7.4 s HCH 8.4 8.4 s HCH 8.4 s	Speciles OTHER3 WBC 59 - 47/a RBC 1151 - 47/a HGB 12.0 - 6/a HGT 46.0 T MCH 10.4 m MCH 26.1 ¥/a PLT 7/ ++++ + 47/a	Species OTHER3 NBC 78 - 4% /s RBC 783 - 4% /s HGB 15 - 2 + 4 HGT 50 - 0 1 HCT 53 - 4 /s HCH 15 - 3 + 4 MCH 19 - 3 + 4 MCHC 30 - 4 + 4 PLT 13 9 - 0 + 4/4	Species OTHER3 WBC 26.40% RBG 802.45% HGB 12.7 4% HCT 44.01 MCH 56.9 % MCH 15.8 % MCHC 28.9 % PLT 1155.4 %	Spectes OTHER3 WBC 74 #%/L RBC 612 * %/L HOB 12.3 ¥/L HOT 40.1 I HOV 65.5 f MCHC 30.7 ¥/L MCHC 36.7 ¥/L
				100 200 (M.)	100 000 (m)
MC (MJ	100 380 (PL)	MC (N.2		100 250 (n.)	HAC:
10 20 20 (A)	10 20 M		NT	КТ 10 - 29 - 30 - ргд	AU 10 20 30 (NJ

Animal type: Ferret PCV: 34.0	Animal type: Prairie Dog PCV: 51.0	Animal type: Hamster PCV: 50.5	Animal type: Elephant PCV: 38.0	Animal type: Cheetah PCV: 45.0	Animal type: Bharal PCV: 38.0
Species OTHER3 WBC 155-4% RBC 786-4% HCB 12,0 44 HCT 39,5 1 MCH 15,2 H MCH 15,2 H MCHC 30,4 M MCHC 30,4 M MCHC 30,4 M	Species OTHER3 WBC 42 - 6% RBC 936 + 6% HGB 15.9 ±/6 HGT 55.9 ±/6 MCV 57.5 f MCH 17.0 m MCHC 29.5 ±/d	Species OTHER3 HBC 49.9%/L RBC 769.9%/L HGB 16.3.9/d HGC 52.01 MCV 67.6 ft MCH 21.2 rt MCHC 31.3 ML PLT 63.1 MS/L	Species OTHER3 HBC 105 +0% HBC 310 +0% HGB 13.3 4% HGT 36.4 1 MCH 42.9 H MCH 36.5 54 PLT 25.6 +0%	Species OTHER3 WBC 92 - 67% RBC 796 6% HGB 14.9 ½ HGT 57.0 1 MCH 18.7 % MCHC 26.1 ½% PLT 28.7 %	Species OTHER2 HBC 80 - #/u. HBC 1 450 - W/u. HGB 13.9 ±/d. HGT 54,5 1 MCV 37.6 5 MCHC 25.5 ±/d. PLT 90.3 ±/M.
100 280 180 (v.)	HE	141 300 300 141		NO 200 X00 (R.)	MC 14.3
264 (AJ	100 250 (HL)	100 250 (%.2	100 100 (e.1	100 100 (n.)	100 - 100 (M)
F.T	NT (NJ)	M 013	M.1 M.1 M.1 (n.)	T.1 10 10 30 (A.1	MJ 10 20 50 (MJ

Fig. 1 Blood cell size of the different types of animals

1. WBC counting

It was possible to determine the WBC counts from the cell size distribution curves of the animals other than dogs and cats, without major problems. As can be seen from Fig. 2, in bovine blood, there were some RBCs that were not completely lysed by the hemolyzing reagent. Because of this, the cell size distribution of RBC ghosts partly overlapped the cell size distribution of the WBCs, possibly affecting the WBC counts in some samples. WBCs of the control animals (dogs and cats) and the ferrets, hamsters and cheetahs did not have high resistance against the hemolyzing reagent and therefore the cell size distribution had a single peak. But the rest of the animals showed two-peak distributions. Among the 15 types of animals whose blood was analyzed in the present study, mice had the lowest WBC counts at 5-46 x 10^{2} /uL and pigs had the highest at 122-262 x 10^{2} /uL.

2. RBC counting

Judging from the cell size distribution curves, there appears to be no problem in measuring RBCs, except with goat's RBCs. In the case of goats, some RBCs were apparently missed while counting at the set sensitivity of the analyzer. The RBC count was the highest in goats, at 1170-2109 x 10^4 /uL. It was the lowest in elephants, at 252-310 x 10^4 /uL. MCV was the highest in elephants at 123-135fL and smallest in goats at 20.2-25.1fL. *Fig. 3* is a photomicrograph that compares the RBCs of elephants with those of goats.

The ancestors such as goats and sheep had lived near the tops of high altitude mountains. Therefore, the RBCs became smaller and more numerous to increase the surface area, to achieve a higher gas exchange capacity. The bharal, which was distributed in mountainous regions, had an RBC count of $1365-2031 \times 10^4$ /uL and MCV of 24.5-27.3fL, which were similar to the levels of goats.

Fig. 2 RBC ghosts

Elephant

Goat

Fig. 3 Photomicrograph

3. Platelet counting

With goats and sheep, the platelet counts went beyond the measurement range because the RBCs overlapped their measuring range, making it impossible to accurately count the platelets. The reason was not only the small size of the RBCs but the fact that the relative sizes of the RBCs and platelets caused the overlapping of their cell size distributions. It was possible to measure platelets in bharals, which had MCV in almost the same range (24.5-27.3fL) as in goats because their cell size distribution of platelets did not overlap with that of RBCs. Platelet counting was also impossible with many calves that were less than one year old (Fig. 4) because their cell size distribution curves was very similar to that of goats and sheep. However, a small peak of platelets could be seen, and it is assumed that measurement may become possible if the automatic search range of the platelet fraction is suitably adjusted. There was no problem with platelet counting in the other animals. Animal blood gets coagulated more easily than human blood. Therefore, in some samples that were suspected, from the shapes of their cell size distribution curves shown in Fig. 5, to have had platelet aggregation at the time of sampling, the aggregation was confirmed with smear samples and the data from samples that showed aggregation was excluded from the calculation of the minimum, maximum, average, and standard deviation given in *Table 1*.

4. Hematocrit ratio (PCV/HCT)

The volume of blood cells changes greatly, depending on the environment they are placed in. The centrifugal hematocrit value (PCV) is the ratio of the volume of RBC cells packed by applying physical pressure. On the other hand, the hematocrit value (HCT) calculated by the hematology analyzer is measured on blood cells that are in an expanded or a shrunk state because of the osmotic pressure and pH of the diluting solution or the chemicals in it, etc. Thus, the measuring principle is very different in PCV and HCT. But, as a whole, PCV was correlated with HCT, although they were not correlated in some samples. Currently, because of the efficiency, the HCT values measured with hematology analyzers are used more often than the centrifugal hematocrit values. In practice, the rate of change in the RBC volume caused by the physical and chemical factors in the environment varies greatly depending on the animal species. Therefore, we have to apply a correction for each animal species, by obtaining a conversion factor that would bring the HCT values close to the centrifugal hematocrit values. In the present study, the number of samples used appeared to be not large enough in some animal species for determining the proper conversion factors. But when we calculated PCV/HCT, i.e., the ratio of centrifugal hematocrit value/the HCT value under the conditions of the automated hematology analyzer meant for analysis of human blood, goats had the lowest average ratio of 0.68

Fig. 5 Sample of platelet aggregation

and elephants the highest (1.08). Only prairie dogs, in some cases, and elephants had ratios of 1.00 or higher, and the others had lower than 1.00.

CONCLUSION

Measurements with the multiparameter automated hematology analyzer on the blood of 15 types of animals, under measurement conditions which had been optimized for human blood, showed that it was generally possible to measure the parameters except for the platelet counts in goats, sheep, and less than one year old bovines. The number and size of blood cells differed from one species to another. Therefore, it is necessary to set the measurement thresholds for each type of animal and correct the hematocrit value. With the blood of different types of animals, it was not possible to make accurate measurements of the parameters directly with the hematology analyzer set for human blood. The hematocrit ratio (the correction factor) shown in Table 1 would differ within the same animal species, depending not only on the sex and age but also on the automated hematology analyzer used for the measurements. Therefore, it is necessary to determine the correction factor for the automated hematology analyzer used. On the basis of the results obtained in this study, we plan to make the next version of the analyzer capable of making measurements on the blood cells of a number of different animal species.

ACKNOWLEDGEMENT

We would like to express our sincere gratitude to the Exotic Pet Clinic, Hyogo Prefectural Technology Center for Agriculture, Forestry and Fisheries (Livestock Technology Institute and Awaji Agricultural Institute), Hyogo Prefecture Horse Racing Union, Himeji Central Park, Kobe City Rokkousan Pasture, and Awaji Farm Park England Hill, and the staff of these organizations, who provided the animal blood samples for the present study.

References

- Masatoshi Seki , Kunitake Hirashima, Kosaku Kobayashi : Hematology of Experimental Animals . Soft Science , INC. 313-462,1981.
- Nemi C.Jain : Essentials of Veterinary Hematology . LLL Seminar, 1-74, 1996.
- 3) Shiro Miwa, Nobuo Aoki, Akira Shibata : Hematology Second Edition . Bunkoutou , 1767-1772 , 1994.
- 4) Takahiko Hori : Effects of the serum osmolarity on Red Cell Indices . Medichal Technology, 30(11), 1246-1247,2002. (in Japanese)
- Masaharu Hisasue : Evaluation of the Sysmex PocH-100iV hematology analyzer for Veterinary Use , Journal of Animal Clinic Medicine , Vol. 13 No.3/493-98, 2004.