

# The 7<sup>th</sup> Technological presentation

March, 19<sup>th</sup> 2010

Sysmex Corporation

# **Table of Contents**

1. Opening remarks

Hisashi letsugu President and CEO

2. Direction & Strategy of R&D

Mitsuru Watanabe Member of the Managing Board and Executive Officer Head of R&D

3. Progress of R&D project

Mitsuru Watanabe Member of the Managing Board and Executive Officer Head of R&D

- 1) Progress status in launching stage
  - (1) Rapid diagnosis of lymph node metastasis technology (OSNA)
  - (2) Bird flu diagnosis technology
  - (3) Digital blood smear preparation technology
  - (4) Reagent preparation technology
- 2) Progress status in practical stage
  - (5) Blood testing technology
  - (6) Cervical cancer screening technology
  - (7) Postprandial hyperglycemia monitoring technology

Kaoru Asano Executive Officer, Central Research Laboratories

- 3) Progress status in research stage
  - (8) CTC Detection Technology
  - (9) CNS disease diagnosis Technology with DNA chip

## **1. Introduction**

#### Hisashi letsugu, President and CEO



#### More companies boosting healthcare offerings

- Companies entering from other fields of business
- M&A activities accelerating growth

# Reinforce R&D, the wellspring of corporate growth

Sysmex's Basic Policy on R&D Investment

As a technology-oriented company, our R&D investment benchmark is 10% of net sales.



#### **R&D Investment Trends**



#### **Expansion of Overseas Development Bases**

- Recent Developments -



#### **R&D Center Europe (Germany)**

- ► July 2006 Opening
- October 2009 Lab relocation and expansion

#### Reasons for Establishment

- Clinical evaluation in hematology and life sciences
- Develop products tailored to European needs



#### **Diagnostic Reagent Development Center in China**

December 2009 Establishment within Sysmex Wuxi Co., Ltd.

#### Reasons for Establishment

- Development of reagents (mainly immunochemistry)
- Joint research with local university hospitals
- Clinical evaluation

#### Moving into the 2<sup>nd</sup> Decade of the Central Research Laboratories



- Reason for establishing Central Research Laboratories (2000)
  Contribute to development of preventive and regenerative medicine
- Lymph node metastasis testing technology (expand applicable cancer types)
- Cervical cancer screening technology
- Cancer recurrent prediction technology
- Cancer treatment effectiveness prediction technology
- Minimally invasive glucose monitoring technology
- Clinical condition simulation technology

November 2008

System for rapid detection of breast cancer lymph node metastasis based on OSNA method covered by Japanese health insurance



The gene amplification

detector RD-100i



Designated reagent



Technopark (Kobe)

#### **Realizing the "Disease Management" Concept**

- Commercializing high-value-added analysis parameters
- Promoting R&D in life sciences (cancer, lifestyle diseases)

# 2. Direction & strategy of R&D

Mitsuru Watanabe Member of the Managing Board and Executive Officer Head of R&D



# Sysmex Way

#### **A Unique & Global Healthcare Testing Company**

Providing highly valuable diagnostics testing to optimize and standardize medical care

- Improvement of QOL / extension of healthy life expectancy
  - Improvement of Medical economy value

#### Shaping the advancement of health care





#### **Outline of technology strategy (1)**









#### **Technology platform**





#### 3. Progress of R&D project

Mitsuru Watanabe Member of the Managing Board and Executive Officer Head of R&D

- 1) Progress status in launching stage
  - (1) Rapid diagnosis of lymph node metastasis technology (OSNA)
  - (2) Bird flu diagnosis technology
  - (3) Digital blood smear preparation technology
  - (4) Reagent preparation technology
- 2) Progress status in practical stage
  - (5) Blood testing technology
  - (6) Cervical cancer screening technology
  - (7) Postprandial hyperglycemia monitoring technology

Kaoru Asano

Executive Officer, Central Research Laboratories

- 3) Progress status in research stage
  - (8) CTC detection technology
  - (9) CNS disease diagnosis technology based on DNA chip



#### 1. Reporting subjects

- ·Technical features of Sysmex technology and product
- ·Technical themes that Sysmex conducts R&D and their clinical benefits
- Outline of Sysmex Technology Strategy
- 2. Policy regarding report of technological themes
  - To explain R&D themes in below 3 steps
  - < Research stage > Start of research and basic consideration
    - ·Magnitude of value in practical use
    - ·Explanation of future plan of R&D
  - < Practical stage > Elemental research, practical and product commercialization stage
    - ·Technological impact on characteristics of products
  - < Launching stage > Accomplishment of development & introduction to market
    - · Details of technological features and superiority







## 1) Progress status in launching stage

(1) Rapid diagnosis of lymph node metastasis technology (OSNA)

#### **OSNA** - Lymph node metastasis of colon cancer -





#### **Clinical research result**

|      |   | Pathological test |    |  |
|------|---|-------------------|----|--|
|      |   | +                 | -  |  |
| OSNA | + | 33                | 1  |  |
|      | - | 2                 | 92 |  |

Marker gene : CK19

Concordance rate : 97.6%

The 38<sup>th</sup> Association of Cancer and Lymph node 2006



#### **OSNA** - Lymph node metastasis of stomach cancer -



#### **Clinical research result**

|      |   | Pathological test |     |  |
|------|---|-------------------|-----|--|
|      |   | +                 | -   |  |
| OSNA | + | 40                | 4   |  |
|      | - | 5                 | 113 |  |

Marker gene : CK19

Concordance rate : 94.4%

The 62<sup>nd</sup> Annual Meeting of the Japanese Society of Gastroenterological Surgery(2007)



# Progress status in launching stage (2) Bird flu Diagnostic technology

#### Threat of bird (avian) influenza



A summary of tracking avian influenza A specimens and viruses shred with WHO from 2003-2009



#### Infection risk still remains due to circulation of bird influenza virus

# Key technology of detection for corresponding with bird influenza





Successful development of a specific antibody that recognizes an amino acid difference in between human and bird influenza virus

#### Advantages of nucleic protein detection





#### Features of bird influenza corresponding kit





Specific detection of bird influenza and elimination of seasonal influenza/swine influenza



1)Progress status in launching stage

(3) Digital blood smear preparation technology



Utilizing part time doctor or external body is the only way to perform bone marrow diagnostic examination at the institutions having no permanent hematologist who is in shortage. Blood film







#### Realization of telediagnosis by digitized microscope image of blood smear



#### **Digital blood smear preparation technology**





#### Target segment of digital blood smear





Copyright by Sysmex Corporation



# 1)Progress status in launching stage(4) Reagents preparation technology

#### Reagents preparation technology (dilution unit and accurate conductance meter)





#### Reagent preparation unit: RU -10





Size : 30(W) x 30(D) x 57(H) cm, Weight : 24 kg
Footprint : 20L reagent pack size (Space-saving)

#### Application system employing reagent preparation technology







### 2) Practical stage

- (5) Blood testing technology
  - ·Accurate detection technology of low platelet counting
  - ·Efficacy management technology for wide-range Lab test settings

### **Conventional technology for platelet counting**





Difficult to count platelet accurately for patient who has a particular disease

# sysmex

#### New platelet counting technology



#### Enhanced accuracy in abnormal cell detection

Successful development of accurate platelet counting technology by using specific fluorescent staining on Flowcytometry

Fluorescent



#### **Clinical value of low platelet counting**



#### Optimization of platelet transfusion Contribution to QOL(side effect, prevention of infection) Contribution to improvement of medical economy


2) Practical stage

## (6) Cervical cancer screening technology

## **Cervical cancer screening system**





 Under consideration of stability improvement with sample preservative solution

## Future of HPV test (estimate)



✓ Cytology screening would increase by introducing automation technology in not only advanced countries but also rising countries.

✓HPV test would gradually increase, especially in advanced country.

✓ The number of cytology screening will be influenced by introducing preventive vaccine after 2020.





## 2) Practical stage

## (7) Postprandial hyperglycemia monitoring technology

## What is post-meal hyperglycemia?





Post-meal hyperglycemia : risk factor of large vessel disease (cerebral accident, myocardial infarction)

Development of device which is able to simply and exactly monitor post-meal hyperglycemia

#### **Body fluid extraction technology**







## < Screening of pre-diabetes status >





3)Research stage

# (8) CTC (Circulating Tumor Cell) detection technology

What is CTC?







## **Diagnostics by using virus (1)**





Increase of telomerase activity

Telomerase activity is observed in almost cancer.

## **Diagnostics by using virus (2)**





\*GFP : green fluorescent protein from Aequorea victoria

## Diagnostics by using virus (3): Establisment measurement system





#### Combination of venture's and Sysmex technology

Copyright 2008 Sysmex Corporation

Sysmex Corporation



## Breast cancer recurrent patient GFP positive cell



#### Capturing cancer cell

Lung cancer patient GFP positive cell Stomach cancer patient GFP positive cell





Fluorescent image

## **Clinical value**





### **Promotion of clinical research**





## Comparison with competitor's technology



|                 | Sysmex                                                                                         | Veridex(J&J)<br>CellSeach <sup>®</sup>                                                                                                       |
|-----------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Principle       | Virus                                                                                          | Anti-EpCAM<br>Magnetic beads                                                                                                                 |
|                 | Telomerase activity                                                                            | Antibody stain                                                                                                                               |
| Characteristics | <ul> <li>Detection and count of<br/>live cell that is key factor<br/>of metastasis.</li> </ul> | <ul> <li>Detection* and count of<br/>cancer cell from image of<br/>nuclear stain and<br/>* Subjective<br/>immunostaining judgment</li> </ul> |
| Notes           | <ul> <li>Suitable for several type<br/>of cancer</li> </ul>                                    | <ul> <li>FDA approval (metastatic<br/>breast cancer, colon cancer,<br/>prostate cancer)</li> </ul>                                           |



## 3) Research stage

(9) Technology of CNS disease diagnosis based on DNA chip

### What is DNA chip?





#### Possible to a comprehensive analysis of gene

\*: in case of U133 plus2.0

## Performance of DNA chip (expression analysis)





Copyright 2008 Sysmex Corporation

## **Issue of DNA chip for diagnosis**



## Conventional analysis method



#### lssue

Easily obtainable desired out come with several terms of thousands of parameters (Over-training)

Different results in each test

**Condition of clinical DNA chip as diagnostic tool** 



- Essential requirements
   To obtain stable clinical result by any laboratories
- Sufficient requirements

To obtain adequate and clinical performance



- Sample preparation method
- Quality assurance method
- Analysis method

Development of original DNA chip technology





Development of clinical DNA chip for chronic diseases

## Chronic disease:



## Target:

- ✓ Systemic diseases
- ✓ No effective biochemical marker available

Central nervous system

sysme

## **Original analysis technology**





# **Chronic Fatigue Syndrome**





CFS analysis by DNA chip (1)



# Extraction of 9 gene clusters(function) for disease condition analysis



Score = The average of [(Signal-the average of healthy individual) / SD of healthy individual]

# CFS analysis by DNA chip (2)







 $\sim\,$  Comparison between normal and CFS by matching ages  $\,\sim\,$ 

|        | DNA chip |    |
|--------|----------|----|
|        | +        | -  |
| CFS    | 94       | 6  |
| Normal | 5        | 58 |

| Sensitivity | 94.0% |
|-------------|-------|
| Specificity | 92.0% |
| Concordance | 93.3% |

 $\sim\,$  Comparison between young normal and CFS  $\,\sim\,$ 

|        | DNA chip |     |
|--------|----------|-----|
|        | +        | -   |
| CFS    | 94       | 6   |
| Normal | 13       | 187 |

| Sensitivity | 94.0% |
|-------------|-------|
| Specificity | 93.5% |
| Concordance | 93.7% |

The 16<sup>th</sup> Japan Mibyou System Association (2009)



# We Believe the Possibilities.

#### Sysmex Corporation

<Contact> IR & Corporate Communication Div. Phone: +81-78-265-0500 Email: info@sysmex.co.jp URL www.sysmex.co.jp

Sysmex Corporation